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Abstract. ALICE has upgraded many of its detectors for LHC Run 3 to operate
in continuous readout mode recording Pb–Pb collisions at 50 kHz interaction
rate without trigger. This results in the need to process data in real time at rates
100 times higher than during Run 2. In order to tackle such a challenge we intro-
duced O2, a new computing system and the associated infrastructure. Designed
and implemented during the LHC long shutdown 2, O2 is now in production
taking care of all the data processing needs of the experiment. O2 is designed
around the message passing paradigm, enabling resilient, parallel data process-
ing for both the synchronous (to LHC beam) and asynchronous data taking and
processing phases. The main purpose of the synchronous online reconstruction
is detector calibration and raw data compression. This synchronous processing
is dominated by the TPC detector, which produces by far the largest data vol-
ume, and TPC reconstruction runs fully on GPUs. When there is no beam in the
LHC, the powerful GPU-equipped online computing farm of ALICE is used for
the asynchronous reconstruction, which creates the final reconstructed output
for analysis from the compressed raw data. Since the majority of the compute
performance of the online farm is in the GPUs, and since the asynchronous pro-
cessing is not dominated by the TPC in the way the synchronous processing is,
there is an ongoing effort to offload a significant amount of compute load from
other detectors to the GPU as well.

1 Introduction

The ALICE experiment at the LHC has been upgraded during the long shutdown 2 (LS2) to
operate in continuous readout mode for Pb–Pb collisions at 50 kHz interaction rate without
trigger. Fig. 1 shows the current configuration of the experiment and lists its subdetectors.
This results in the need to process data in real time at rates 100 times higher than during
Run 2. In order to tackle this challenge we introduced O2, a new computing system and the
associated infrastructure. Designed and implemented during the long shutdown 2, O2 is now
in production taking care of all the data processing needs of the experiment. In this paper we
will concentrate on two aspects of the O2 software stack: the framework itself and the GPU
usage in the online and offline reconstruction.
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Figure 1. Overview of the ALICE Experiment and its detectors in LHC Run 3

2 ALICE Run 3 Computing model

The O2 project has been detailed already in the past [1], [2]. The system blends the traditional
boundaries between online and offline and provides an integrated computing model where the
only distinction is whether the input is raw data coming directly from the experiment or com-
pressed raw data read from the storage. In addition, certain processing steps can be enabled
or disabled only during synchronous or asynchronous reconstruction, and e. g. different cuts
are used to speed up the processing during the synchronous phase. During the synchronous
phase, data coming from the detector is read out by a first layer of computing nodes, dubbed
First Level Processors (FLP), each associated to a subset of the detector readout channels.
From this layer the FLP2EPN network assembles the so-called time frames, each containing
2.8 ms of continuous readout data. These time frames are then scheduled to arrive at one of
the nodes of a second layer of computing elements, dubbed Event Processing Nodes (EPN).
The EPN farm is fitted with 350 nodes, each with 8 GPUs, and performs the synchronous
pass of reconstruction on the data. The goal of the synchronous phase is to reduce the sheer
amount of data, in particular by compressing the raw data from the TPC detector, using a
combination of lossy and lossless techniques, and to perform the detector calibration. In ad-
dition, it does a full quick reconstruction of the data, for some detectors only for a subset of
the collisions, which is then used for Quality Control (QC) and Monitoring. The output of the
synchronous phase is a set of compressed raw data, denoted Compressed Time Frame (CTF),
and the calibration data. For development, debugging, and monitoring reasons, a small subset
(less than one per mille) of the raw data is stored in parallel. CTFs are stored in a 120 PB
disk buffer at CERN and eventually replicated over to the Grid.

The data from heavy-ion collisions remains on the disk buffer for roughly one year until
the next heavy-ion period. When there is no beam in the LHC, the data is read back from the
CERN buffer to the EPNs for the asynchronous reconstruction. This phase performs the full
event reconstruction of the data using the final calibrations. In addition to the asynchronous
reconstruction on the EPN, WLCG Grid sites also perform the asynchronous reconstruction
for a part of the data, irrespective of the LHC status, reading the data from the replicas in
the Grid. The result of the asynchronous reconstruction is a set of Analysis Object Data files
(AOD), which are used by the ALICE community to perform the actual physics analysis. It



should be noted that the analysis also uses the same software stack. Its description is however
outside the scope of this document and more details can be found in previous work of ours [3].

3 The O2 framework

To implement this new computing system, we collaborated with GSI to create a versatile
software framework, known as ALFA (ALICE - FAIR). This framework features a layered
design and it is designed to accommodate our diverse processing requirements. The founda-
tion is the so-called "Transport Layer" which as the name implies is responsible for moving
the data around. It is based on a message passing toolkit named FairMQ [4]. In FairMQ, the
data processing happens in separate entities named devices. Each device is a UNIX process
to allow for easy deployment and isolation. Multiple devices can be connected in a so-called
topology, where they exchange messages over so-called "channels".

The first advantage of this approach is that it allows for crashing "expendable" devices
without the need to kill the whole topology. This is particularly critical in the online envi-
ronment, where we want to minimise the downtime due to failing optional components, like
for certain QC tasks. Moreover the problem gets naturally partitioned and becomes more
manageable, e.g. when something crashes we get the core file only from the crashing device.
Although FairMQ is a general purpose message passing toolkit, on the same node data trans-
fers are optimised by using a shared memory buffer for message payloads. In this scenario,
devices only exchange references to the data in shared memory, which is crucial for handling
the large data payloads coming from the detector. This optimisation aside, the message pass-
ing paradigm allows for seamless integration of devices across networks, therefore providing
a unified view for both local and distributed computation.

The second layer is the so-called "Data Layer", which is used to describe the data inside
the messages. Multiple backends are supported by the framework, including ROOT [5],
Apache Arrow [6] for data analysis, or detector tailored formats optimised for zero copy and
specially targeted for direct usage from the GPU. This allows us to map data directly in the
GPU buffers for reconstruction, minimising copies and format changes. The final layer is
the so-called "Data Processing Layer" (DPL). The main role of this layer is to abstract the
distributed nature of the system and present a more familiar data flow engine to the end user.

The user describes the data flow in terms of tasks that act on the data, specifying data
dependencies and providing the system a hint of what outputs might be produced by a given
task. The DPL aggregates all the user-provided task descriptions and produces the FairMQ
topology which will implement the data flow. DPL takes also care of interfacing with the
deployment system of the experiment, generating the necessary configuration files to have
the workflow deployed on the computing nodes. When a deployment system is not present,
like when running asynchronous processing, DPL provides a self hosted deployment system,
called the DPL driver, which takes care of starting the tasks in a topology and manages the
task lifetimes. This strategy allows ALICE to have a homogeneous software environment all
the way through the processing chains and DPL effectively abstracts away the deployment
system from the data processing.

Besides being instrumental to running workflows in batch, the DPL driver also provides
an interactive development and debug environment for users to run on their laptop. This
mode opens a so-called Debug GUI on the screen when the user runs a workflow. The GUI
allows the user to investigate the topology, to inspect each device configuration and logs,
and to perform some common manipulations on the selected devices. For example, it can
be used to attach instruments like a debugger or a profiler, to send signals, or to modify the
log level of a given device. The GUI also has facilities to quickly visualise the status of
the computation and the metrics associated to the processing, providing a quick interface to



display them without the need of a full monitoring infrastructure. The GUI is in general run
directly on the user’s local system, however it has been recently upgraded so that in can work
in a remote mode, where a thin HTML client is used to render in a browser window the state
of a workflow running on a remote machine.

Internally DPL owns the state machine which is running the workflow, interfacing with
the facilities which are provided by FairMQ. In particular, while in the RUN state, DPL has its
own event loop which is responsible for handling incoming data requests. The event loop is
implemented thanks to OpenSource library libuv, originally developed for the NodeJS project
and which abstracts the interface with the system socket polling mechanisms, epoll on Linux
and kqueue on macOS / FreeBSD.

4 Parallelism in the O2 framework

The actor-model design of FairMQ allows for multiple approaches to parallelism, which are
marshalled by DPL. The most natural one is running each device as an independent process,
which therefore processes data asynchronously, allowing multiple timeframes to be processed
at the same time. This is what we call "horizontal" parallelism. Similarly, independent parts
of the processing chain can run at the same time, processing different parts of a given time-
frame. This is enabled by the fact that while FairMQ uses a message passing paradigm, when
two devices are running on the same machine, the optimised shared memory back-end allows
shallow copies of the timeframe data (or parts thereof) without any performance penalty. It
will be up to the transport layer to keep track of the reference counting and avoid copies. This
allows efficient "vertical" parallelism, i.e. different devices processing the same timeframe
in parallel. Of course, this approach to parallelism, while very natural to implement on top
of a message passing toolkit like FairMQ, has the drawback that without feedback data tends
to accumulate in the input queue of the slowest device. To prevent this, DPL provides an
out-of-band back channel that allows the last device of the chain to notify the first one about
its processing status, allowing the latter to implement several rate limiting tactics.

Moreover, DPL allows a given device to be replicated a number of times. This happens
without any extra coding by the user. Data will then be served to each replica in a round-
robin manner. This is particularly useful to improve the performance of those steps which
are bottlenecks for the data flow, and it resulted in an effective way to improve parallelism in
a seamless manner. This has been critical in particular for all devices which are downstream
from the one which processes data on the GPU, due to the large data throughput of the latter.

Finally, while DPL at the moment does not provide multithreading support out of the
box, the design is already geared to allow multiple algorithms to run in parallel on the same
device. We expect the natural evolution of the framework will go in the direction of automat-
ically merging devices running algorithms which would benefit from running together, in a
multithreaded fashion. This will however always be considered an optimisation, keeping the
original message passing architecture intact.

5 Computing steps in synchronous and asynchronous
reconstruction

Before discussing how synchronous and asynchronous reconstruction are implemented, it is
instructive to get an overview over which processing tasks are running in which phase. The
main purpose of the synchronous processing is compression, calibration, and quality control.

Data compression for all detectors uses a custom rANS [7] library for entropy encoding.
In addition, detector-specific preprocessing steps can reduce the entropy, and some detectors



also perform non-lossless first reconstruction steps during synchronous reconstruction to re-
duce the data volume. The detector with the largest data volume by far is the TPC. The TPC
chain for data compression consists of zero-suppression after common-mode correction and
ion tail cancellation in the FPGAs in the FLPs and cluster finding in the GPUs on the EPNs
as non-lossless steps. This is followed by a track model compression to store cluster to track
residuals instead of absolute coordinates [8] and other TPC-specific steps to reduce the en-
tropy. Finally the TPC data goes through the common ANS compression. The track model
compression requires full tracking of the TPC data for all collisions, thus the synchronous
reconstruction must perform the full TPC tracking at sufficient resolution. Data compression
for other detectors also involves clustering, but does not require full event reconstruction.

Each detector of ALICE has several calibration tasks during the synchronous processing,
mostly running custom algorithms. Some of these tasks require reconstructed collisions and
tracks, while others are very basic, running directly on the raw data stream. The prime exam-
ple for a task that needs tracks, and also the most complicated calibration tasks, is the creation
of the correction maps for the TPC space charge distortions [8]. This requires matching TPC
tracks to the inner and outer detectors ITS, TRD, and TOF, and a refit of the tracks with-
out the TPC information to obtain the distortion of TPC clusters with respect to the refitted
trajectory. While this requires full tracking of the barrel region of ALICE, it is sufficient to
reconstruct less than 5% of the most peripheral collisions. Thus, overall, calibration requires
full event reconstruction, but only on a small subset of the collisions of a time frame, and thus
the reconstruction required for the calibration is computationally less critical than for the data
compression.

QC runs several custom algorithms on the raw data streams of all detectors, while the
global quality control is based on fully reconstructed collisions. Thus, similarly to the cal-
ibration, quality control requires full event reconstruction, but only on a small subset of the
collisions.

In summary, the synchronous reconstruction requires full tracking of the TPC, full re-
construction and tracking of a small subset of collisions of all detectors, and it runs several
detector-specific calibration and quality control tasks. In contrast, the asynchronous recon-
struction performs the full event reconstruction for every collision, it runs similar quality
control tasks, but basically no calibration tasks. Consequently, from a computational perspec-
tive, the synchronous processing is fully dominated by TPC tracking, while the computing
load during asynchronous reconstruction is distributed much more heterogeneously over all
detectors. Tables 1 and 2 give an overview of the relative processing times, confirming the
expectation that synchronous processing is fully dominated by the TPC with a contribution
above 99%. Note that these numbers were measured using only the CPU version of the algo-
rithms, i. e. without GPU processing, and the multithreading was configured in such a way to
have as many time frames in flight as the available memory of the node permits, and then use
multi-threading on top to the extent that constant 100% CPU load is obtained.

6 Design of computing farm and selection of algorithms for GPUs

The prime design goal of the EPN farm is to sustain the maximum expected data rate during
synchronous processing of 50 kHz Pb–Pb data taking. From the above explanations and
Tables 1 and 2 it is clear that the only critical component for synchronous processing is
the TPC track reconstruction. Since ALICE already had good experience with the usage
of GPUs in the High Level Trigger (HLT) of LHC Run 2 [9], it was decided to run the TPC
reconstruction on GPUs, and the bulk of the processing capabilities of the EPN farm should be
in the GPUs [10]. Placing multiple GPUs in the same server saves costs for the infrastructure,
thus ALICE uses 8 AMD MI50 or 8 AMD MI100 GPUs in each server. Benchmarks with



Table 1. Relative processing times of synchronous reconstruction steps. Calibration and QC tasks are
excluded in this table, since they are not relevant for GPU offload.

Processing step Relative time
TPC Processing (Tracking, Clustering, Compression) 99.37%
EMCAL Processing 0.20%
ITS Processing (Clustering + Tracking) 0.10%
TPC rANS Encoding 0.10%
ITS–TPC matching 0.09%
MFT Processing 0.02%
TOF Processing and Global Matching 0.02%
Rest 0.1%

Table 2. Relative processing times of asynchronous reconstruction steps.

Processing step Relative time
TPC Processing (Tracking) 61.41%
ITS–TPC matching 6.36%
MCH Clusterisation 6.13%
TPC rANS Decoding 4.65%
ITS Tracking 4.16%
TOF Matching 4.12%
TRD Tracking 3.95%
MCH Tracking 2.02%
AOD Production 0.88%
Quality Control 4.00%
Rest 2.32%

Monte Carlo simulations have shown that 64 (96) physical CPU cores are required to feed
the MI50 (M100) GPUs with data. The servers have 512 GB (1 TB) of main memory, and
are connected with 100 Gbit InfiniBand.

The processing distributes the time frames in a round-robin fashion among the GPUs,
avoiding any GPU intercommunication. In order to also minimise the communication be-
tween the CPU sockets of the dual-socket server, the DPL workflows for synchronous and
asynchronous processing are split into two workflows, one running per NUMA domain. The
only component that is shared between the NUMA domains is the global input buffer for the
raw data, since the server has only one network HCA writing into the global input buffer.
Fig. 2 illustrates the workflow.

Since the EPN farm will perform asynchronous processing roughly half of the time, good
CPU and GPU utilisation in the asynchronous phase are also important aspects. Thus the
GPU software development was following two scenarios:

• The baseline scenario contains all components that are mandatory to run on the GPU
for successful Pb–Pb data taking at 50 kHz interaction rate. In addition, steps that
were already ready to run on GPU are also included. The baseline scenario had to be
implemented, otherwise ALICE could not take data during the heavy-ion run.
• The optimistic scenario contains a larger fraction of the steps running on the GPU in

order to achieve higher GPU load during the asynchronous reconstruction. It is not
necessary for synchronous data taking. It is beneficial to have consecutive processing
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Figure 2. Illustration of the ALICE Run 3 synchronous reconstruction workflow for 8 GPUs and 128
virtual CPU cores. The workflow is split in the two NUMA domains, sharing only the shared input
buffer. Both NUMA domains have 4 GPUs, which are each driven by individual OS processes. For
simplicity, only the reconstruction processes are shown, and QC and calibration processes are omitted.

steps on the GPU to avoid intermediate data transfer back and forth. Thus, the full
central barrel global tracking was chosen as candidate for the optimistic scenario.

Fig. 3 shows the reconstruction steps of the barrel tracking, and which step is considered in
which scenario, as well as the ready state of the steps. While the baseline scenario for syn-
chronous processing is already fully implemented and in operation, ALICE is still working
to complete the optimistic scenario to improve the performance in the asynchronous recon-
struction.

In 2022, it became clear that the original estimates for the number of hits in the TPC with
the new detector were lower than in reality. Since the required computing time goes linearly
with the number of TPC hits, an extension of the EPN farm was performed to restore the 30%
computing capacity margin over the 50 kHz Pb–Pb estimates. While the original EPN servers

TPC Track 

Finding

TPC Track 

Merging

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c

ITS Track 

Finding

ITS 

Track Fit

ITSD 

Vertexing

Figure 3. Illustration of the processing graph of synchronous and asynchronous GPU processing steps
in the baseline and optimistic scenarios. Colors indicate the readiness to run this step on the GPU. All
steps are fully implemented and commissioned to run on CPU in the asynchronous processing.
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Figure 4. Speedup of several GPU models compared to one AMD Rome CPU core in the EPN servers.
The measurements are corrected for the number of CPU cores required to drive a GPU, i. e. the figure
states how many CPU cores can be replaced by one GPU.

were equipped with MI50 GPUs as specified above, the new servers have MI100 GPUs and
consequently more CPU cores and memory. Fig. 4 gives an overview of the GPU models that
were considered.

7 Performance in synchronous and asynchronous reconstruction

The performance of the TPC tracking for synchronous reconstruction with Pb–Pb multiplic-
ity was extensively benchmarked using Monte Carlo simulations [11]. Since then, it turned
out that there will be more TPC clusters in the new TPC than predicted and the computing
estimates were adjusted accordingly. Because there was no heavy-ion data taking at high in-
teraction rate in LHC Run 3 yet, MC simulations and extrapolations from the low interaction
rate heavy-ion run in 2022 are the only available input. Further improvements to the physics
performance of the tracking slowed down the processing to some extent, which has been
mostly compensated by performance improvements of similar size. Overall, with the latest
MC simulation and extrapolations from 2022 low interaction rate data, the current EPN farm
with 350 nodes should be able to process the 50 kHz Pb–Pb data with a computing margin
of 30%. From the performance shown in Fig. 4 relative to CPUs, a comparable CPU-only
computing farm would require more than 2000 servers with 64 physical cores each, which
would be prohibitively expensive.

The experience from the pp data taking and the low interaction rate Pb–Pb data taking
did not yet reveal severe issues, but also did not stress-test the computing infrastructure to
the full extent. Due to the free available computing resources at low interaction rate and dur-
ing pp data taking, additional reconstruction steps could be enabled during the synchronous
processing for validation and for studies, which will not be possible during Pb–Pb.



The situation for asynchronous reconstruction is quite different. In the synchronous re-
construction, the EPNs must keep pace with an externally defined input data rate, and keep
a certain compute margin for rate fluctuations and unforeseen cases. In contrast, the asyn-
chronous reconstruction should process the compressed time frames from the disk buffer as
fast as possible. Currently, the asynchronous processing is CPU-bound and the GPU utilisa-
tion itself does not play a large role. Hence, asynchronous reconstruction aims for 100% CPU
utilisation, while the publishing rate of time frames at the beginning of the processing graph
is a free parameter. It should be high enough to achieve full CPU utilisation, but also not
too high to avoid over-subscription of the CPU cores and to reduce the memory footprint by
having fewer time frames in flight. The workflow employs a simple rate limiting algorithm,
counting how many time frames are in flight globally, and throttles the injection accordingly.
In addition, a smoothing of the publishing rate using heuristic filters is applied, to achieve
a more even publishing rate, and avoid waves of high compute load percolating through the
processing chain.

In the end, the processing achieves a CPU utilisation of more than 90%. Increasing the
actual load to a constant 100% is only possible by having more time frames in flight, which
would often oversubscribe the CPU cores, require much more memory, cause more context
switches, and actually yield a lower processing throughput. It should also be noted that the
load is measured in virtual hyperthreaded CPU cores, i. e. from 50% on, all physical CPU
cores are loaded, while the second virtual core per physical core provides only around 20%
additional compute capacity. Thus, the unused compute capacity at 90% load is not 10% but
around 2%.

Table 3. Processing time per time frame in seconds on an original EPN server with MI50 GPU and 64
physical CPU cores. The second column shows the time per time frame of a single workflow, using the

resources listed under configuration. The third column shows the total throughput achievable on the
EPN by running multiple workflows in parallel to utilise all resources.

Configuration Time per TF Time per TF
(1 workflow) (full server)

8 virtual CPU cores 76.91s 4.81s
16 virtual CPU cores 34.18s 4.27s
1 GPU + 16 virtual CPU cores 14.60s 1.83s
1 NUMA domain (4GPUs + 64 virtual cores) 3.5s 1.7s

In order to compare CPUs to GPUs, four asynchronous workflow configurations were
tuned for the EPNs, two using only CPUs, and two using CPUs and GPUs. Table 3 lists the
achieved performance. The 1 NUMA workflow, running twice per EPN, is the logical setup,
resembling the synchronous processing workflow, and turns out to be the fastest configuration
as expected. Comparing e. g. the workflow with one GPU to the 1 NUMA domain workflow,
the latter has the advantage that it has to run only one instance of uncritical processes, thus
having fewer processes in total. In addition, the joint use of larger shared memory buffers
yields synergy effects, such that more time frames can be in flight with the same memory
constraint.

Currently, the asynchronous reconstruction runs only the TPC tracking on the GPU, since
the latest version of the ITS tracking algorithm is not compatible with GPUs. The ITS track-
ing was improved in several aspects, and GPU compatibility was broken to simplify the
development. GPU compatibility will be restored in the near future. From Table 2, around
60% of the compute load from the TPC tracking can currently run on the GPUs, reducing the
CPU compute time by 60%, allowing for a speedup factor of 2.5. Comparing the best GPU



against the best CPU configuration in Table 3, this factor of 2.5 is almost exactly reached with
4.27s against 1.7s. Thus, under the given constraints, the usage of GPUs in the asynchronous
reconstruction works optimally.

The aggregate compute load of the barrel tracking in Table 2 is around 80% of the total
asynchronous compute load. Thus, once the full optimistic scenario is implemented on the
GPU, the speedup should increase to a factor 5. The fraction of compute power (measured
using TPC tracking) of the EPNs that is provided by the GPUs is 85% of the total EPN
compute power, thus this speedup factor of 5 is realistically achievable. Thinking beyond the
optimistic scenario, it would not make sense to port more than 85% of the workload to the
GPU, since then one would become GPU-bound. The absolute limit for the GPU speedup is
a factor of around 6.5, if exactly 85% of the workload would run on the GPU.

8 Conclusions

For Run 3, ALICE has switched to a new common software framework DPL for synchronous
and asynchronous processing of the data, instead of the former separate online and offline
frameworks. The synchronous processing relies heavily on GPUs to provide the compute
power necessary for processing heavy-ion collision data in real time at the highest rates.
Today, around 99% of the compute load of the synchronous processing is running on the
GPUs. The online processing farm consists of 350 servers with 8 GPUs each, and according
to Monte Carlo simulations, it can handle 50 kHz Pb–Pb data with a compute margin of 30%.
A comparable CPU-only farm would require more than 2000 servers with 64 cores each.
At the moment, 60% of the compute load of asynchronous processing is ported to GPUs,
yielding a speedup factor of 2.5 on EPN servers compared to the CPU-only workflow. To
optimise the EPN server load during asynchronous processing, ALICE aims to port the full
barrel tracking chain to GPUs, which will offload 80% of the compute load and should yield
a speedup factor of 5. During pp data taking in 2021 to 2023, and during the low interaction
rate heavy-ion run in 2022, the data processing performed as expected. The first operation
at the designed peak load will happen in the end of 2023, when ALICE will process Pb–Pb
collisions at 50 kHz interaction rate for the first time.
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