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Targeting to record large minimum bias sample.

- All collisions stored for main detectors → no trigger

- Continuous readout → data in drift detectors overlap

- Recording time frames of continuous data, instead of events

- 100x more collisions, much more data

- Cannot store all raw data → online compression

→ Use GPUs to speed up online (and offline) processing

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.

ALICE in Run 3
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The ALICE detector in Run 3

• ALICE uses mainly 3 detectors for barrel tracking: ITS, TPC, TRD + (TOF)

• 7 layers ITS (Inner Tracking System – silicon tracker)

• 152 pad rows TPC (Time Projection Chamber)

• 6 layers TRD (Transition Radiation Detector)

• 1 layer TOF (Time Of Flight Detector)

• ALICE performs continuous readout.

• Native data unit is a time frame: all data from

a configurable period of data up to 256 LHC orbits.

• Default was ~11 ms (128 LHC orbits) before 2023.

• Current default is ~2.8 ms (32 LHC orbits) ITS

TPC

TRD

TOF
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• Synchronous processing (what we called online before):

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

O2 Processing steps

Needs tracking of 

1% of tracks
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• Synchronous processing (what we called online before):

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

O2 Processing steps
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• Synchronous processing (what we called online before):

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

• Event reconstruction (tracking, etc.):

– Required for calibration, compression, and online quality control

– Need full TPC tracking for data compression

– Need tracking in all detectors for ~1% of the tracks for calibration

→ TPC tracking dominant part, rest almost negligible (< 5%)
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• Synchronous processing (what we called online before):

• Extract information for detector calibration:

– Previously performed in 2 offline passes over the data after the data taking

– Run 3 avoids / reduces extra passes over the data but extracts all information in the sync. processing

– An intermediate step between sync. and async. processing produces the final calibration objects

– The most complicated calibration is the correction for the TPC space charge distortions

• Data compression:

– TPC is the largest contributor of raw data, and we employ sophisticated algorithms like

storing space point coordinates as residuals to tracks to reduce the entropy and remove

hits not attached to physics tracks

– We use ANS entropy encoding for all detectors

• Event reconstruction (tracking, etc.):

– Required for calibration, compression, and online quality control

– Need full TPC tracking for data compression

– Need tracking in all detectors for ~1% of the tracks for calibration

→ TPC tracking dominant part, rest almost negligible (< 5%)

• Asynchronous processing (what we called offline before):

• Full reconstruction, full calibration, all detectors

• TPC part faster than in synchronous processing (less hits, no clustering, no compression)

→ Different relative importance of GPU / CPU algorithms compared to synchronous processing
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Transport Layer: ALFA / FairMQ

➤ Joint collaboration with FAIR and GSI 
➤ Standalone processes (devices) for deployment flexibility 
➤ Message passing as a parallelism paradigm 
➤ Shared memory backend for reduced memory usage and improved performance 
➤ Seamless remote communication

4

O2: SOFTWARE FRAMEWORK IN ONE SLIDE



Data processing happens in separate processes, called devices.

ALFA / FAIRMQ: GENERAL IDEA

5

Device



ALFA / FAIRMQ: GENERAL IDEA

6

Device 1 Device 2 Device 4

Device 3

Multiple devices form a topology. Devices exchange messages over so called channels.



ALFA / FAIRMQ: GENERAL IDEA

7

Device 1 Device 2 Device 4

Device 3

Certain "expendable" devices are allowed to die without killing the processing.



When running on the same node, message passing is actually optimised via the shared memory backend provided by 
FairMQ. Only pointers in shared memory are exchanged.

ALFA / FAIRMQ: GENERAL IDEA
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Seamless and homogeneous support for multi-node setups using one of the network enabled message passing backends, 
e.g. InfiniBand with RDMA.

ALFA / FAIRMQ: GENERAL IDEA
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O2: SOFTWARE FRAMEWORK IN ONE SLIDE
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Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. 
➤ ROOT based serialisation. Useful for QA and final results. 
➤ Apache Arrow based. Backend of the analysis data model and for integrating with other tools. 
➤ We contributed the RDataFrame Arrow backend to ROOT.

Transport Layer: ALFA / FairMQ1

➤ Joint collaboration with FAIR and GSI 
➤ Standalone processes (devices) for deployment flexibility & resilience. 
➤ Message passing as a parallelism paradigm 
➤ Shared memory backend for reduced memory usage and improved performance 
➤ Seamless remote communication



O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Framework & 
Data Processing Layer (DPL)

Hides the hiccups of a distributed system, presenting a familiar "Data Flow" system. 
➤ Reactive-like design (push data, don't pull) 
➤ Implicit workflow definition via modern C++ API. 
➤ Core common tasks: topological sort of dependencies, deployment of generated topologies, data lifecycle 

handling, service management, common infrastructure services, plug-in manager. 
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.
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Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends: 
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➤ Shared memory backend for reduced memory usage and improved performance 
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O2 DATA PROCESSING LAYER
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readeCTF reader reader 
device

O2  DPL

User provides a description in 
terms of tasks and physics 
quantities.

O2 Data Processing Layer (DPL) 
translates the implicit workflow(s) 
defined by physicists to an actual 
FairMQ topology of devices, injecting 
readers and merger devices, 
completing the topology and taking 
care of parallelism & rate limiting.

Results.root

MergerDevice 1 Device 2 Device 3

Task 1

Task 2 Task 3



DATA PROCESSING LAYER: BUILDING BLOCK

A DataProcessorSpec defines a pipeline stage as a 
building block. 

➤ Specifies inputs and outputs in terms of the O2 Data 
Model descriptors. 

➤ Provide an implementation of how to act on the inputs 
to produce the output. 

➤ Advanced user can express possible data or time 
parallelism opportunities.

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

13



DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

Topology is defined implicitly. 
Topological sort ensures a viable dataflow is constructed (no cycles!). 

Laptop users gets immediate feedback through the debug GUI. 
Service API allows integration with non data flow components (e.g. Control)

14
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Debug GUI
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4 FairMQ devices  
exchanging messages in a 

diamond topology
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GUI shows state of the 
various message queues in 

realtime. Different colors 
mean different state of data 

processing.



Clicking on a node provides 
the log
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NUMA
Domain 1

GPU
Processing

Shared
Input

NUMA
Domain 2

Shared CPU
Processing

Shared CPU
Processing

Output

Takeaway message: 
DPL allows building FairMQ 

topologies in an implicit way.

O2: SYNC RECONSTRUCTION



DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM

20

Each device runs a finite state machine.
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An external control is responsible to transition states.  At P2 this is integrated with the Experiment 
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

START
Control

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM
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START

An external control is responsible to transition states.  At P2 this is integrated with the Experiment 
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM
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START

An external control is responsible to transition states.  At P2 this is integrated with the Experiment 
Control System... while on the user laptop or on the grid we have a DPL driver process with such role.

Takeaway message: 
DPL abstracts away integration 

with the control system and 
deployment.

DATA PROCESSING LAYER: INTEGRATION WITH THE CONTROL SYSTEM



O2: ASYNC RECONSTRUCTION

Takeaway message: 
One single framework, from 

sync reconstruction to async and 
beyond.



O2: ASYNC RECONSTRUCTION

Extra perk: 
The GUI can be reached from a 

web client connecting to a 
websocket, allowing debugging 
even when running deployed.



DATA PROCESSING LAYER: EVENT LOOP
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The Data Processing Layer (DPL) actually implements the Running state of a Device.

Running



DATA PROCESSING LAYER: EVENT LOOP

27

The (epoll / kqueue based) event loop only wakes up the device when there is something to do, e.g. to handle 
incoming data to process using the user provided code.

Update loop time

Events?

Run timers

Receive pending 
data

Input 
data complete?

No

Run user callback 
on completed inputs



By default, we process inputs asynchronously, where we can have more 
than one timeframe in fly at the same time. Horizontal parallelism.

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES

28

Device 1 Device 3Device 2

Data 
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 2 Timeframe 1 Timeframe 0



Different parts of a given timeframe can be processed in parallel. 
Vertical Parallelism.
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Data 
Processor 1

Data 
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Data 
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Device 4

Data 
Processor 4

DATA PROCESSING LAYER: PARALLELISM OPPORTUNITIES



Without precautions, timeframes pile up in the input queue of the slowest 
device.

DATA PROCESSING LAYER: RATE LIMITING

30
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Device 1 Device 3Device 2

Data 
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 0Timeframe 1

processed = 0

A back-channel reporting how many timeframes were processed to the source device 
is used to limit the number of in-fly timeframes.

DATA PROCESSING LAYER: RATE LIMITING
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is used to limit the number of in-fly timeframes.

DATA PROCESSING LAYER: RATE LIMITING
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Device 1 Device 3Device 2

Data 
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

processed = 1

First device ensures (read - processed) < max-in-fly

DATA PROCESSING LAYER: RATE LIMITING

A back-channel reporting how many timeframes were processed to the source device 
is used to limit the number of in-fly timeframes.
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Device 1 Device 3Device 2

Data 
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

processed = 1

Timeframe 2

A back-channel reporting how many timeframes were processed to the source device 
is used to limit the number of in-fly timeframes.

DATA PROCESSING LAYER: RATE LIMITING
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Device 1 Device 3Device 2

Data 
Processor 1

Data 
Processor 2

Data 
Processor 3

Timeframe 1

freed = 1 GB

First device ensures (allocated - freed) < max-available-memory

Besides the number of timeframes, we have the possibility to rate limit 
based on other quantities, e.g. available shared memory.

DATA PROCESSING LAYER: RATE LIMITING



Parts of the chain can be faster due to offloading to GPUs. We can easily increase the 
number of downstream devices to increase throughput (at the cost of memory).

DATA PROCESSING LAYER: PIPELINING
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Data 
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Timeframe 0
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DPL allows to specify pipelining for a given DataProcessors, providing easy parallelisation 
of processing.
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Device 1 Device 3

Device 2
t0

Data 
Processor 2 

"t0"

Timeframe 0

Device 2
t1

Data 
Processor 2 

"t1"

Timeframe 1

DATA PROCESSING LAYER: PIPELINING



1-to-1 mapping between Devices and DataProcessors not mandatory!

DATA PROCESSING LAYER: MULTIPLEXING

38
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We allow multiple DataProcessors to run cooperatively on the same device. This is 
currently ad-hoc, e.g. for digitisation. We are working to have it available in a generic 

way for the cases where the extra protections of multiprocessing are not needed.

DATA PROCESSING LAYER: MULTIPLEXING

39

Device 1 Device 2

Data 
Processor 1

Data 
Processor 2Data 

Processor 3



We are working to integrate multiplexing and pipelining features to allow 
multithreaded execution of (thread safe) data processors.

DATA PROCESSING LAYER: FUTURE

40
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• ALICE has a long history of GPU usage in the online systems, and since 2023 also for offline:

GPU usage in ALICE in the past

2010

64 * NVIDIA GTX 480 in Run 1

Online TPC tracking

2015

180 * AMD S9000 in Run 2

Online TPC tracking

Today

>2000 * AMD MI50 in Run 3

Online and Offline barrel tracking
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• The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Overview of compute time of reconstruction steps

Processing step % of time

TPC Processing (Tracking) 61.41 %

ITS TPC Matching 6.13 %

MCH Clusterization 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Synchronous processing

(50 kHz Pb-Pb, MC data)

Asynchronous processing

(650 kHz pp, real data, calorimeters not in run)

Only data processing steps

Quality control, calibration, event building excluded!

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %
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• The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Overview of compute time of reconstruction steps

Synchronous processing

(50 kHz Pb-Pb, MC data)

Totally dominated 

by TPC: >99%

Only data processing steps

Quality control, calibration, event building excluded!

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

mailto:drohr@cern.ch


12.7.2023 David Rohr, drohr@cern.ch 17

Overview of compute time of reconstruction steps

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Only data processing steps

Quality control, calibration, event building excluded!

Baseline solution (available today):

- Mandatory for synchronous processing

TPC sync. reco on GPU

Optimistic solution (under development):

- Achieve best GPU usage in async phase

- Run most of tracking + X on GPU

3

• Synchronous processing :

• 99% of compute time spent for TPC.

• EPN farm build for synchronous processing!

• Asynchronous reprocessing : 

• More detectors with significant computing contribution.

• To be kept in mind, as EPNS also run async. Reco.

• GPUs well suited for TPC reco (from Run 1 and 2 experience).

• GPUs provide the required compute power.

• Time frame concepts yields large enough GPU data chunks.

• Following up 2 scenarios for EPN GPU processing:

Synchronous processing

(50 kHz Pb-Pb, MC data)

mailto:drohr@cern.ch
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CTF 
(entropy coder)

Raw data decoding

TPC clustetring, 

tracking, compression 

(GPU)

ITS, MFT clustering

TPC ZS

ITS/MFT

Online calibrations

TPC

ITS/MFT

TRD

TOF,

compression

TRD

TOF

Event selection

EMCAL

PHOS

MID,
reconstruction

FT0, reco

FV0, reco

FDD, reco

MCH

MID

MCH

EMCAL

PHOS

CPV

CPV

FT0

FV0

FDD

ZDC

HMPID

CPV clustering

HMPID

FLP                        EPN

Input for calibration

Residuals for

TPC SCD calib.

ITS tracking 

for ~1% of 

all tracks

ITS/TPC track 

matching

Matching 

to TRD

Matching 

to TOF

EMCAL cells

PHOS cells

CCDB

TOF digitization 

clusterization

CTP
CTP

Synchronous Processing

18
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• Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:

• Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.

• Optimistic scenario includes everything related to the barrel tracking.

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c

ITS

TPC

TRD

TOF
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• Central barrel tracking chosen as best candidate for optimistic scenario for asynchronous reco:

• Mandatory baseline scenario includes everything that must run on the GPU during synchronous reconstruction.

• Optimistic scenario includes everything related to the barrel tracking.

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Identify hits 

below 10MeV/c
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

ITS 

Vertexing

TPC Track Model 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Baseline scenario
(ready except for 1 optional component)

• Baseline scenario fully implemented.

• Not mandatory to speed up the synchronous GPU code further.
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

TPC Track Model 

Compression
TPC Entropy 

Compression

TPC 

Track Fit

In operation

Work in progress

Under study

TPC Cluster 

removal

Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Part of optimistic 

scenario

Synchronous chain

only few % of eventsall events

Identify hits 

below 10MeV/c

• TPC synchronous processing almost fully on the GPU.

• 2 optional parts still being investigated for sync. reco on GPU: TPC entropy encoding / Looper identification < 10 MeV.
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TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx

ITS 

Afterburner

TRD 

Tracking

ITS 

Vertexing

TOF 

Matching

Global 

Fit

V0 

Finding

TPC 

Track Fit

In operation

Work in progress

Under study Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC 

Calibration

GPU barrel tracking chain

Central barrel global tracking chain

TPC Cluster 

Finding

TPC Distortion Correction

Part of baseline 

scenario

Asynchronous chain

Part of optimistic 

scenario

• Several steps missing in asynchronous reconstruction:

• Matching to ITS

• Matching to TOF

• Secondary vertexing

• TPC interpolation for SCD calibration
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• All intermediate shared buffers on GPU.

• Keep component structure

• Super-component runs everything

at once on GPU.

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

GPU

Shared 

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Input

Output

Shared 

Buffer

GPU Tracking Super-Component

TPC/ITS Tracker Component

Modular GPU code

Every component can still run on the host in the exact same way.

Shared buffers either in host memory or in GPU memory.

Shared 

Buffer
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing)

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers

• Screening different platforms for best price / performance.
(including some non-competitive platforms for cross-checks and validation.)

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

Plugin system for multiple APIs with common source code
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Memory allocation / Pipelined processing

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events.

– Single events too small for GPU → Process time frames.

• ALICE reuses memory between different algorithms in a TF, possibly between chunks of collisions in a TF.

• Zoomed-in plot of TPC Clusterization stage (part with largest DMA transfers → most difficult to hide in pipeline).

• Full profile of 3 time frames: 100% GPU utilization with kernel execution, No performance loss from data transfer!

Light / dark blue: GPU kernel execution

Green: DMA transfer

1 pipeline iteration

Pipeline margin:

No performance loss when the

DMA transfer finishes before

Transfer of input for next iteration is 

chunked itself into small pieces to avoid 

for intermittent transfers for current 

iteration.

time

q
u
e
u
e

mailto:drohr@cern.ch


12.7.2023 David Rohr, drohr@cern.ch 28

Implementation principles

1. GPU code should be modular, such that individual parts can run independently.

• Multiple consecutive components on the GPU should operate with as little host interaction as possible.

2. GPU code should be generic C++ and not depend on one particular vendor or API. (O2 supports CUDA, HIP, OpenCL)

• No usage of special features that are not portable.

3. GPU usage should be optional and transparent: running O2 should not require any vendor libraries installed.

• All GPU code is contained in plugins, with a common interface.

• Even multiple plugins (GPU backends) can run on the same node.

4. Minimize time spent for memory management.

• We allocate one large memory segment, and then distribute memory chunks internally.

5. Processing on GPU and data transfer should overlap, such that the GPU does not idle while waiting for data.

• This is implemented via a pipelined processing within time frames, and we also overlap consecutive time frames.

6. Data chunks processed by the GPU must be large enough to exploit the full parallelism.

• Fulfilled by design with TFs containing > 100 collisions.

7. GPU and CPU output should be as close as possible.

• But small differences due to concurrency or non-associative floating point arithmetic cannot be avoided.
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Implementation details

• Multiple GPUs in a server minimize the cost.

• Less servers, less network.

• Synergies of using the same CPU components for multiple GPUs, same for memory.

• Splitting the node into 2 NUMA domains minimizes inter-socket communication 

→ 2 virtual EPNs.

• Still only 1 HCA for the input → writing to shared memory segment in interleaved memory.

• GPUs are processing individual time frames → no inter-GPU communication.

• Host processes can drive 1 GPU each, or run CPU only tasks.

• GPUs can be shared between algorithms.

• With memory reuse if within the same process.

• With separate memory in case of multiple processes (Not done at the moment).
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Implementation details

• Multiple GPUs in a server minimize the cost.

• Less servers, less network.

• Synergies of using the same CPU components for multiple GPUs, same for memory.

• Splitting the node into 2 NUMA domains minimizes inter-socket communication 

→ 2 virtual EPNs.

• Still only 1 HCA for the input → writing to shared memory segment in interleaved memory.

• GPUs are processing individual time frames → no inter-GPU communication.

• Host processes can drive 1 GPU, or run CPU only tasks.

• GPUs can be shared between algorithms.

• With memory reuse if within the same process.

• With separate memory in case of multiple processes (Not done at the moment).

• Benchmarked with MC data: For 100% utilization of 8 GPUs (AMD MI50), we need:

• ~50 CPU cores, ~400 GB of memory, 30 GB/s network input speed, GPU PCIe negligible.

• Selected server:

• Supermicro AS-4124GS-TNR, 8 * MI50 GPU, 2 * 32 core AMD Rome 7452 CPU (2.35 GHz), 512 GB RAM (16 * 32GB)

• Infiniband HDR / HDR100 network.
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Implementation details

•

•

→

•

•

•

•

•

•

Synchronous processing 

DPL workflow
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Implementation details

•

•

→

•

•

•

•

•

•

NUMA Domain 1Synchronous processing 

DPL workflow

Input goes to 

interleaved memory

NUMA Domain 2

4 processes 

and 4 GPUs per 

NUMA domain
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Implementation details

•

•

→

•

•

•

•

•

•

To illustrate the complexity:

Full synchronous workflow including 

Quality Control and Calibration
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• Performance of Alice O2 software on different GPU models and compared to CPU.

• MI50 GPU replaces ~80 AMD Rome CPU cores in synchronous reconstruction.

• Includes TPC clusterization, which is not optimized for the CPU!

• ~55 CPU cores in asynchronous reconstruction (more realistic comparison).

• Validated software with MI100 GPU, ca 35% faster.

Synchronous processing performance

Without GPUs, more than 2000

64-core servers would be needed for 

online processing!
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Synchronous processing performance

• Performance of Alice O2 software on different GPU models and compared to CPU.

• MI50 GPU replaces ~80 AMD Rome CPU cores in synchronous reconstruction.

• Includes TPC clusterization, which is not optimized for the CPU!

• ~55 CPU cores in asynchronous reconstruction (more realistic comparison).

• Validated software with MI100 GPU, ca 35% faster.

Without GPUs, more than 2000

64-core servers would be needed for 

online processing!

Experience from 2022:

• GPU TPC Processing performance for pp as expected, but also less 

challenging than Pb-Pb.

• No 50 kHz Pb-Pb data taken so far, waiting for October 2023!

• Low-rate Pb-Pb data in 2022 required negligible processing.

• Current EPN farm consists of 280 servers.

• Extension ongoing to 350 servers, new servers with MI100.

• From current MC estimates and experience from 2022 Pb-Pb data:

Extended EPN farm should have ~30% processing margin.
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• The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

Overview of compute time of reconstruction steps

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Synchronous processing

(50 kHz Pb-Pb, MC data, processing only)
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• The table below shows the relative compute time (linux cpu time) of the processing steps running on the processor.

• Synchronous reconstruction fully dominated by the TPC (99%), no reason to offload anything else to the GPU.

• In async reco, currently the 61.4% TPC are on the GPU, with the full optimistic scenario (full barrel tracking) it will be 79.77%.

Overview of compute time of reconstruction steps

Processing step % of time

TPC Processing (Tracking, Clustering, Compression) 99.37 %

EMCAL Processing 0.20 %

ITS Processing (Clustering + Tracking) 0.10 %

TPC Entropy Encoder 0.10 %

ITS-TPC Matching 0.09 %

MFT Processing 0.02 %

TOF Processing 0.01 %

TOF Global Matching 0.01 %

PHOS / CPV Entropy Coder 0.01 %

ITS Entropy Coder 0.01 %

Rest 0.08 %

Processing step % of time

TPC Processing (Tracking) 61.41 %

ITS TPC Matching 6.13 %

MCH Clusterization 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Synchronous processing

(50 kHz Pb-Pb, MC data, processing only)

Asynchronous processing

(650 kHz pp, real data, calorimeters not in run)

Running on GPU in baseline scenario Running on GPU in optimistic scenario
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• Async reco GPU speedup on the EPN:

• The speed of light is ~6.5x speedup, since 85% of the compute power is in the GPU (reduce the CPU time by 85%, more becomes GPU-bound).

– Only in case everything scales as well as TPC processing.

– Even then cannot be reached since GPU processing needs CPU resources.

• Today, offloading the ~60% of the async to the GPU should yield a speedup around 2.5x.

– We remove 60% of the CPU time, while we are still CPU-bound,

but we have some overhead CPU resources for driving the 8 GPUs.

• In the optimistic scenario, by offloading 80% we might get close to 5x.

– Still a bit away from the speed of light.

Overview of compute time of reconstruction steps

Processing step % of time

TPC Processing (Tracking) 61.41 %

ITS TPC Matching 6.13 %

MCH Clusterization 6.13 %

TPC Entropy Decoder 4.65 %

ITS Tracking 4.16 %

TOF Matching 4.12 %

TRD Tracking 3.95 %

MCH Tracking 2.02 %

AOD Production 0.88 %

Quality Control 4.00 %

Rest 2.32 %

Asynchronous processing

(650 kHz pp, real data, calorimeters not in run)

Running on GPU in baseline scenario Running on GPU in optimistic scenario
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Time frame scheduling sync vs. async

• Synchronous processing: rate defined from data 

taking: 351 TFs per second.

• EPNs must handle that rate, and have some margin.

• Asynchronous processing: process TFs as fast as 

possible, ideally reach 100% CPU load.

• Need many TFs in flight, to use all CPU cores via DPL 

pipelines.

• Available memory limits the maximum number of TFs 

in flight.

• Constant TF publishing rate ideal to spread the load 

horizontally and vertically in the processing graph.

• Injecting TFs into the chain with unstable rate leads to 

oscillations in the processing.

CPU load with TFs injected as fast as possible, 

(only limited by max TF in flight in memory)

→ Leads to strong CPU load oscillations.
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Real speedup in asynchronous reconstruction

• Synchronous processing: rate defined from data 

taking: 351 TFs per second.

• EPNs must handle that rate, and have some margin.

• Asynchronous processing: process TFs as fast as 

possible, ideally reach 100% CPU load.

• Need many TFs in flight, to use all CPU cores via DPL 

pipelines.

• Available memory limits the maximum number of TFs 

in flight.

• Constant TF publishing rate ideal to spread the load 

horizontally and vertically in the processing graph.

• Injecting TFs into the chain with unstable rate leads to 

oscillations in the processing.

→ Heuristic to smoothen TF publishing rate solves 

the problem.

→ Will use 2.8 ms TFs from 2023 to reduce memory 

usage in GRID sites.

CPU load with smoothened TF publishing rate. (in 

addition to maximum TF in flight).

• Average CPU utilization of 90%

• 11.6% higher throughput

• Unused 10% are only HyperThreaded cores
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Real speedup in asynchronous reconstruction

• For asynchronous reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: synchronous and asynchronous.

– Unused nodes in the synchronous pool are moved to the asynchronous pool.

– As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.
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Real speedup in asynchronous reconstruction

• For asynchronous reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: synchronous and asynchronous.

– Unused nodes in the synchronous pool are moved to the asynchronous pool.

– As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.

• Performance benchmarks cover multiple cases:

• EPN split into 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.

• EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.

• Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).

• In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s

CPU 16 core 34.18s 4.27s

1 GPU + 16 CPU cores 14.60s 1.83s

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

F
a

c
to

r 
2

.5
1

M
a

tc
h

e
s

e
x

p
e

c
te

d
 f

a
c

to
r 

2
.5

mailto:drohr@cern.ch


12.7.2023 David Rohr, drohr@cern.ch 44

Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s

CPU 16 core 34.18s 4.27s

1 GPU + 16 CPU cores 14.60s 1.83s

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

Real speedup in asynchronous reconstruction

• For asynchronous reconstruction, EPN nodes are used as GRID nodes.

• Identical workflow as on other GRID sites, only different configuration using GPU, more memory, more CPU cores.

• EPN farm split in 2 scheduling pools: synchronous and asynchronous.

– Unused nodes in the synchronous pool are moved to the asynchronous pool.

– As needed for data-taking, nodes are moved to the synchronous pool with lead time to let the current jobs finished.

– If needed immediately, GRID jobs are killed and nodes moved immediately.

• Performance benchmarks cover multiple cases:

• EPN split into 16 * 8 cores, or into 8 * 16 cores, ignoring the GPU : to compare CPUs and GPUs.

• EPN split into 8 or 2 identical fractions: 1 NUMA domain (4 GPUs) or 1 GPU.

• Processing time per time-frame while the GRID job is running (neglecting overhead at begin / end).

• In all cases server fully loaded with identical jobs, to avoid effects from HyperThreading, memory, etc.
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Configuration used for async processing

(Also resembles most the synchronous 

processing configuration)
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Configuration (2022 pp, 650 kHz) Time per TF (11ms, 1 instance) Time per TF (11ms, full server)

CPU 8 core 76.91s 4.81s

CPU 16 core 34.18s 4.27s

1 GPU + 16 CPU cores 14.60s 1.83s

1 NUMA domain (4 GPUs + 64 cores) 3.5s 1.70s

Real speedup in asynchronous reconstruction

• Overhead at begining / end of job:

• Constant overhead at start / stop of processing: 149 s (1.8%)

→ Negligible compared to job runtime (benchmark job was 8491 s, could be extended to >10h)

• Additional time needed for AOD checking / merging: 238s (2.8%, CPU only Postprocessing to speed up analysis)

• Time lost at processing dip at the beginning during condition fetching / initialization: 32s (0.4%)

• Some interesting performance comparisons:

• 1 GPU workflow, running isolated on a node v.s. running 8 times in parallel on a node: ??% faster (HyperThreading).

• 1 NUMA workflow, with rate smoothing v.s. without rate smoothing: 11.6% faster.

• Benefits of 2 * 1 NUMA domain workflow over 8 * 1 GPU workflow:

• Not all CPU processes duplicated → fewer processes, and significantly less memory consumption (~ 100 GB difference).

• Share the CPU processes in DPL workflow → more CPU  capacity compensates load fluctuations, less context switches.
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Lessons learned

• GPUs can speed up the processing significantly.

• Not necessarily all workload needs to run on GPU, but the hot spot.

• Inexperienced users can contribute improvements to algorithms, for implementing full new reconstruction steps on 

GPU more expert knowledge is needed.

• (Remote) Debug GUI to inspect topology (remotely) is very useful.

• Scheduling for synchronous and asynchronous processing is different.

• Should also optimize for memory perhaps sacrificing a bit of performance.

• 11ms v.s. 2.8ms TFs.

• Memory is more limited on GRID sites than on your online farm.

• A common software framework for multiple GPU types allows for changing the vendor and simplifies debugging.

• Default build should contain all GPU backends, to be enabled transparently and optionally (e.g. via plugins).

• Having the full reconstruction in a single monolithic process is failure-prone and difficult to debug (Run 3), too many 

individual processes can have huge memory demand → good compromise needed.
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Conclusions

• ALICE employs GPUs heavily to speed up online and offline processing.

• 99% of synchronous reconstruction on the GPU (no reason at all to port the rest).

• Today ~60% of full asynchronous processing (for 650 kHz pp) on GPU (if offline jobs on the EPN farm).

– Will increase to 80% with full barrel tracking (optimistic scenario).

• Synchronous processing successful in 2021 - 2023.

• pp data taking and low-IR Pb-Pb went smooth and as expected, but not causing full compute load.

• Full rate will come with Pb-Pb in October 2023.

– 50 kHz Pb-Pb processing validated with data replay of MC data (~ 30% margin).

• Asynchronous reconstruction has started, processing the TPC reconstruction on the GPUs in the EPN farm, and in

CPU-only style on the CERN GRID site.

• EPN nodes are 2.51x faster when using GPUs.
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